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ABSTRACT

The problem of analyzing an initialized loop and verifying

that the program computes some particular function of its inputs

is addressed. A heuristic technique for solving these problems

is proposed which appears to work well in many commonly occurring

cases. The use of the technique is illustrated with a number of

applications. A hierarchy of initialized loops is suggested

which is based on the "effort" required to apply this methodology

in a deterministic (i.e. guaranteed to succeed) manner. It is

explained that in any case, the success of the proposed heuristic

relies on the loop exhibiting a "reasonable" form of behavior.

An informal categorization of such programs is made which is

based on two opposing problem solving strategies. It is sug-

gested that our heuristic is naturally suited for use on 2rograms

Io 4n one of these categories.
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A Heuristic For Deriving Loop Functions

1. Introduction

In this report, we will consider programs of the following

form:

<INITIALIZATION STATEMENTS>
while <LOOP PREDICATE> do

<LOOP BODY STATEMENTS>
od.

These programs tend to occur frequently in programming in order

to accomplish some specific task, e.g. sort a table, traverse a

Jata structure, calculate some arithmetic function, etc. :'ore

*recisely, the intended purpose of such a program is often to

compute, in some particular output variable(s), a specific func-

tion of the program inputs. In this paper, we address the prob-

lem of analyzing a program of the above form in order to prove

its correctness relative to this intended function.

One common strategy taken to so2ve this proble is to heu-

ristcally synthesize a sufficiently strong in-luctive asertiorn

I (i.e. loop invariant [Hoare 69]) for proving the correctness of

the program. A large number of techniques to ai! in the iscovery

of these s r have appeared in the 1iteratur- (sec, for

ex am.l, [rit 74, :_atz & '"anna 751) . 1t is our viea;, .o'-

ever, that these t4_chniques seen to be more "7ahine or ented"

than "peon2e orinte1." That is, they oeem geare: toiar use in

an t I - n en .rrator for an automatic 2rO)r man ;e tIcation s y-

ts-. ut',-r7o a r z aI t2 ortion of t!7 on :"'ty of t>eze

tic'-i.cues -1 u3 to the, - gerera l nu:oc7 nature. -he met'io.lc'-



A Heuristic For Deriving Loop Functions

ogy proposed here is intended to be used by programmers in the

process of reading (i.e. understanding, documenting, verifying,

etc.) programs and is tailored to the commonly occurring verifi-

cation problem discussed above.

An alternative to the inductive assertion approach which is

taken in this paper is to invent an hypothesis concerning the

general input/output behavior of the WH1ILE loop. Once this has

been done, the loop can be proven/disproven correct with respect

to the hypothesis using standard techniques [Mills 72, Mills 75,

Basu & :Iisra 75, Morris & Wegbreit 77, ,'7egbreit 77, .:isra 78].

If the hypothesis is shown to be valid, the

correctness/incorrectness of the program in question follows

immediately. It has been shown [Basu & Misra 7"), Misra 78, Misra

79, Basu 801 that this loop hypothesis can be generated in a

leterministic manner (i.e. one that is guaranteed to succeed) for

* I tao restricted classes of programs. The anproach sugqrgstet here

is similar to this method in that the same type of loop hehavior

seers to be exploited in order to obtain the hypothesis. Cur

approach is not deterministic in general, but as . result, is

,.intended to 1e more wilely applicable anr! eas'*r to use than

those rreviously proposed in the literature.

,ne view, of the problem of -liscovering the gnora1

input/output Iehavior of the VM-"IL7 loc? ur.-er ccnsiceration Tngh't

be .t.. it and ma!e a guess about -,hat t 's. n e fit 7c

abC.t :'oing this *y "e:.ecutjng" the loop by '-. on 'ver_ san-

I' n ?r.pts arA th'en guessing some cenernl - renion 'or tie

-2-W

-' *i f*



A Heuristic For Deriving Loop Functions

input/output behavior of the loop based on these results. Deci-

sions that need to be made when using such a technique include

how many sample inputs to use, how should these inputs be

selected, and how should the general expression be inferred.

Another consideration is that hand execution can be a difficult

and an error prone task. Indeed, it seems that the loops for

which hand execution can be carried out in a straightforward

manner are the ones that are least in need of verification or

some other type of formal analysis.

Our methodology is similar to this technique in that we

attempt to infer the general behavior of the loop from several

sample loop behaviors. In contrast to this technique, however,

the sample behaviors are not obtained from hand execution, rather

they are obtained from the specification for the initialized loop

program. In many of the cases we have studied, the general

behavior of the loop in question is quite easy to guess fron

these samples. This is not to say that the loop computes a "sim-

ple" function of its inputs or that the loop necessarily operates

in a "simple" manner. Much more accurately, the ease with which

the general behavior can be inferred from the samples is due to a

"sinl.e" connactior between a changp in the input vu2 n1

init'alizad vart ah!e and the corresponding change causht' In the

result Dro,'uce! by the loop. '-e ,7ill expand on this idea in ;'hlt

. o .- s.



A Heuristic For Deriving Loop Functions

2. The Technique

In order to describe the proposed technique, we represent

the verification problem discussed above as follows:

(x 6 D(f)}
X := K(X);
while B(X) do

X := H(X)
od

{v=f(xo)}.

In this notation, X represents the data state of the program. The

symbols K and .1 are data state to data state functions

corresponding to the effects of the initialization and loop body

respectively. The function 3 is a predicate over the data state.

The program is specified to produce in the variable v a function

f of the input data state XO. The notation D(f) appearing in the

progran. preconlition is the domain of the function f, i.o. the

3et o. states for ohich f is defined.

If D is the set of all possible program, data states and T in

- =et of values that the variablP v ma- assume, the s-onci ica- 

tion function f has the functinnality f : 0 -> n. .n or4-r to

voifya 2rogram of -i.s for,, we c',:ose to fi" afunction

->7.':.ch £,-.,e.-the input/cut pt c'aracteistics of tf.3

* ",'!L7 loop ( e,,.r i sitn'Yly general n.:)ut donan. rifiza'Ay,

th -. t o ain must ho large enough to contain 31l the inter-

-% "-e at states 3neratr as th'e oc. it.rtes. i tr i[

73] .. h " .. *. 3. - r n



A Heuristic For Deriving Loop Functions

We briefly consider two alternative approaches to synthesiz-

ing this loop function g. The alternatives correspond to the

"top down" and "bottom up" approaches to creating inductive

assertions discussed in [Katz & Manna 73, Ellozy 81]. In the

"top down" alternative, the hypothesis g answers the question

"what would the general behavior of the loop have to be in order

for the program to be correct?" If such an hypothesis can be

found and verified, the correctness of the program is esta-

blished. If the program is incorrect, no such valid hypothesis

exists. In the "bottom up" alternative, the hypothesis g answers

the question "what is the general behavior of the loop?" In this

case, a valid hypothesis always exists. Cnce it has been found

and verified, the program is correct if and only if the initiali-

zation followed by g is equivalent to the function f.

The advantage of a "top down" approach is that it is usually

easier to apply in practice because the verifier has nore infor-

mation to work vith when synthesizing the hypothesis. The disad-

vantage of such an approach is tiAt it may not be as ;e' -suited

to disproving the ccrrectness of programs. This is because to

3is)rove a program, the verifier nust e-ploy an argument ',n'vh

ho,;s that there does not exist a valiA hi -i

.escr ed in th's paper is basel on the "ton own" approach.

wIll return to a :iscussior of this a,*vantaW-"  anA i-arvant-3e

_.ater.

'.'e :e i )y assu:7ing the,- Ir. z' n . _ _ : c ct -;it '-

:.sreot to it znocification. ':- then consier seve-al '-:pet

*ii /4;~ .



A Heuristic For Deriving Loop Functions

of the function g which result from this assumption. First, the

correctness of the program implies

(1) XO e D(f) -> f(XO)=g(K(XO)).

That is, for inputs satisfying the program precondition, the ini-

tialization followed by the loop yields the desired result.

Secondly, since the loop computes g,

3(XO) -> g(XO)=g(H(XO))

holds by the "iteration condition" [-,isra 73] of the standard

technique for showing the loop computes g. This implies

B(K(XO)) -> g(K(XO))=g(H(K(XO))).

Zombining with (1) yields

(2) XO 9 D(f), B(K(X0)) -> f(XO)=g(II(K(XO))).

At this point we choose to introduce an additional universally

quantified state variable X into each of (1) and (2). The

results are the equivalent conditions

(7) X G D(f) , X=K (XO) -> g(X) =f (I"0)

(2-) :. - D(f), 3(K(-'O)), X=H(7(XO)) -> g (:) =f(X0).

..e summarize by saying that if th2 programn is correct wit'

fenpect to its specification, conditions (I') anc (2) hold.

Su.po... no- that the (ecIf'ation (f), an. the input/output

:;ehavior of the initial.ation M, ..... ) - .o

bo 2y (.) ar: kno'wn. Civen this, (1) an.' (2') ca n bc !se t

.solue fcr t'e loon hypothesis g on a certa- .  n %u t

in; t:- -:t rreneas cr th_- program. Tn'eed, (7) an (2" can hn

o ! 'efini' ort-ons o, -.e ur'own l function4
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are seeking. Specifically, each of (1') and (2') can be viewed

as defining a function g with a restricted domain. In this

light, for example, (W) defines the function (i.e. set of

ordered pairs)

g - {(X,Z) I TE XO e D(f) ST (X=K(XO) & Z-f(XO))}.
1.4e call (1") and (2') constraint functions since they are func-

tions and serve as constraints (i.e. requirements) on the general

loop function. :lore precisely put, the constraint functions are

subsets of the general loop function. The hope is that if these

subsets are representative of the whole, the general loop func-

tion may be inferred through analysis of the constraint func-

tions.

In what Eollows we describe a 4 step process for construct-

ing a general loop function g from these constraint functions.

--e suggest that the reader not be taken aback .y what may anpear

to be consid.erable complexity in the description of cur tech-

nique. ",e intentionally have attempted to descrihe the rc-e ure

in a careful, precise manner. Furthe:Tore, the technique

Sb.ased on a few simple irleas and, once those ideas have beein

-earned, w feel it can De app' i e , -7'th a conr - - :- b' e :,ncurt

success.

imnpe 1 - As :ve eescribe these steps, !;e will iustrate

their application on the _ollo'ing trvia. roram to cT.:ute

.nuXti-lication:

-7-



A Heuristic For Derivi,'3 Loop Functions

Iv>=O}
z := 0;
while v # 0 do

z : z +
V :=V - 1
od

{z=-v*kl.

W'e proceed with the example analysis as follows.

Step 1 : RECORD - The first step consists of recording the

constraint functions (copied from (!W) and (2))

Cl: XO e D(f), X=K(XO) -> g(X)=f(XO)

C2: XO G D(f), B(K(X0)), X=H(K(XO) -> g(d)=f(XO)

As a notational convenience, we dispense with the zdata state

notation and use program variables (possibly subscripted by 0 to

denote their initial values) in these function definitions. The

terms YO q D(f) and f(X0) come from the pre and post conditicns

for the initialized loop respectively. The term X=K((X0) is base-I

on the input/output behavior of the initialization, an . the terns
C'((:3)) and X=H((:(3)) together describe the input/outnut

4 behavior of the initialization folo,.ied by exactv 1 2oc itera-

t.n. "fe Ulustrate these ieao with th ' uit!icatien ir:ram

in am ? 1. The constraint functions for this .rograi aro a!-:

w qCi vQ>=J, v=-10, z=3- g(z,v,.)=vG*h

02: v0>9, v=vO- I , z=" -> g(z,v,'-)=v0**.

.e fll n comments concerr'nJ thesr funotion .- 'n'-

t i o . Firct, t .- t.. c n te- s.,.c

(i -"M:ect" sn>- '7iti, a n,' the :-or-- ,
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Secondly, g is defined as a function of each program variable

which occurs in the loop predicate or loop body. That is, g is a

function of the variables on which the behavior of the loo?

directly depends. Furthermore, note that in C2, the term vO>O

captures both XO e D(f) (i.e. vO>=O) and B(K(X)) (i.e. VO,'O). As

a final remark, in a constraint function we will use the phrase

eIozain requirement to refer to the collection of terms to the

left of the "->" symbol and function expression to refer to the

expression which defines the value of g (e.g. vO*k in both Cl and

C2 above).

Step, 2 : SIMPLIFY - All variables which appear in the func-

tion rdefinition but not in the parameter list for g must eventli-

ally, be elimiinated from the d2efinition. On occasion, it is 9os-

sible to solve for the value of such a variable in the domain

reqjuiremaent and! sutstitute the equivalent exnress~ion or it

t*hroug'iout the definition. --o illustrate, in tlie 2efinition C11

azove, vO is a canr'4.Aate for elimination. 'e :nwits val-ie an a

-unction of v ( i. e. v 3=v) , :aen,-e we c an 13'.r'!TrT.'- th - finic f

to

'-: V>=C, Z=Q -> '-ZVK=*,

srI'te that the tenv=vC has .~sperdsince w the 7 s: r't t u-

tion It is- equivalent to T277E. Tn a si-nilar ma~nner, t'ic ~cr

crnstra4.nt function can. he I:LII to (usin~g ,,C=v-')

72: -j>=), -

t".::oI J', ar. - t i:Z 1 ~ r.l !7r. h rtc C s ~s t oft : a

at - I t o a- r0Cc (-3 care -uc--_ o Y< e n tr nu? h
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domain of the constraint function is not mistakenly extended.

For example, if d and dO are integer variables, the definition

dO>O, d=dO*2 -> g(d)=dO*8

does not SIMPLIFY to

d>O -> g(d)=d*4

since the first function defines a value of g only for positive,

even values of d while the second definition defines a value of g

for all positive d. The first function does SIM!PLIFY to

d>O, MVEN(d) -> g(d)=d*4

'.here EVEN(d) is a predicate whi! . is TRUE iff d is even.

tR M: ITE - Variables which appear in the parameter

list for g but not in the function expression of its definition

are candidates to be introduced into the function expression.

Each of these variables will be bound to a term in the domain

reqirement of the cefinition. The purpose of this -tep is to

rewrite the function expression of C2 (Das3-4 on the properties of

tiie oneration(s) involved) in order to introduce these ter-nis .r.t

thC function ex~pression. To illlustrato, cs~rthp bv :

PLITI:M C2 <-efinition. The variable z is a caniate to r

"n.troc>iced T.nt the function ex:.pcess ion (+1) *k i t is OunI1. to

t>e term i7 In tn.! lomain r!2uiro=ent. Thus we need to Intr r ze

an a .t- iona I term k into this function ex-pression. One wiy to

o ',s is to translate the ex:pression to vck+:. -seJ on '-is,

C2: v'=>, z='; -> 3(z,v,h)=.*(+-.

-~~ ~ -A-. r



A Heuristic For Deriving Loop Functions

Step 4 : SUBSTITUTE - In steps 2 and 3, the constraint func-

tions are massaged into equivalent definitions in order to facil-

itate step 4. The purpose of this step is to attempt to infer a

general loop function from these constraints. We motivate the

process as follows. Suppose we are ,searching for a particular

relationship between several quantities, say E, -n and c. Furth-

ermore, suppose that through some form of analysis we have deter-

nined that when m has the value 17, the relationship E=17*(c**2)

holds. A reasonable guess, then, for a general relationship

between E, ,n and c would be E=m*(c**2). This would be particu-

larly true if we had reason to suspect that there was a rela-

tively simple connection between the quantities n and E. 'Te

arrived at the general relationship by substituting the quantity

m for 17 in the relationship which is known to hcl. when m has

the value 17. Viewed in this light, the purpose of the con-

straint function C2 is to obtain a relationshin which holds for a

specific value of n (e.g. 17) . The step E:?ITZ exposes the ter

17 in this relationship. Finally, SUBSTITUTE substitutes m for

17 in the relation3hip and proposes the result as a general -ela-

t'onshii between 7, n and c. In terms of the multipAication -ro-

'am 1-,2ing considere.1, t'h--i 3U2-DT sten Calls o r . n

one of the terms k in the above reritten function r x 1re!-irn.

"..ith the term z. The two possible sulstitutions lead to the fel-

i ',ing general functioni:

v>= -> 1(z,v,k)=v*k+z

v>=0 -> g(z,v,)=v*z.
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Both of these (necessarily) are generalizations (i.e. supersets)

of C2, however, only the first is also a generalization of Cl.

Hence this function is hypothesized as a description of the gen-

eral behavior of the above WHILE loop.

We have applied the above 4 steps to obtain an hypothesis

for the behavior of the loop in question. Since this description

is sufficiently general (specifically, since the loop is closed

for the domain of the function), we can prove/disprove the

correctness of the hypothesis using standard verification tech-

niques [mills 73, Misra 78]. Specifically, the hypothesis is

valid if and only if each of

- the loop terminates for all v>=O,

- v=O -> z=z + v*k, and

- z + v*k is a loop constant (i.e. vO*kO=z + v*k is a loop

invariant)

hold. We remark that the loop hypothesis is selected in such a

way that if it hoils (i.e. the loop does coipute this general

function), the initialized loop is necessarily correct ith

respect to f.

7e emphasize that there are usually an infinite nunbe of

generalizations of the constraint functions Ci an, 2, and that,

"epending on how ai IT and SU3STITUT: are applie, the tech-

.nijuo is capab'e of generating any one of these generalizations.

For exai2!e, ?7i d a U3 STTTU7E applie to the mult i ication

exarmpl coulO have 2roluced

22: v>=O, z=k ->g(z,v,iL
- '
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v*k + 3*k + k*k*(v-7)/(4*k) + k*k*k/(k*k)

-k*k*k*(v-7)/(4*k*k) - k*k*k*3/(k*k)

and

v>=O -> g(z,v,k)-

v*k + 3*z + z*z*(v-7)/(4*k) + z*z*z/{k*k)

-z*z*z* (v-7)/(4*k*k) - z*z*z*3/(k*k)

respectively, where "/' denotes an integer division (with trunca-

tion) infix operator which yields 0 when its denominator is 0.

This last function is also a generalization of Cl and C2.

It has been our experience, however, that vriany initialized

loops occur in which there exists some relatively simple connec-

tion between different input values of the variables constrained

by initialization and the corresponding result produced by the

171ILE loop. Most often in practice, these variables are bound to

values in the domain requirement of _-2 which suggest an applica-

tion of RZTIRITE that uncovers this relationship and lea," to a

correct hypothesis concerning the gerneral loop behavior. In the

following section we illustrate a number of exarip.e zpicati-ons

* of this technique.

3.Ap2licatiols

Exampl I- The following ?rogran computes integer excnen-

* tiation. -his example serves to illustrate t~le use of the tecl--

nique when the loop bod9y contains several paths:

~~1elm -

* '* *. . % -.
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Id>=O}
w:=l;

while d y 0 do
if odd(d)'then w := w * c fi;
c : C*C; T d/2
od

{w=EU dOl.

The infix operator ^ appearing in the postcondition represents

integer exponentiation. The first constz°aint function is easily

obtained:

dO>=O, c=cO, d=dO, w=l -> g(w,c,d)=cO^dO

and SIMPLIFIES to

Cl: d>=0, w=1 -> q(w,c,d)=c^d.

Since there exist two paths through the loop body, we will obtain

two second constraint functions. The first of these deals with

the path which updates the value of w and is executed when the

input value of d is odd. The function is

iO>O, odd(dO), w=cO, c=cO*cO, d=d0/2 -> g(w,c,5)=cC^dO

which SIMIPLI?'IES to

C2a: J>=O, c=Ti*w -> g(-,c,d)=w0(d*2+l)

The function corresponding to the other loop boly path is

]C>Q, even(dC), w=l, c=cO*cO, d=0/2 -> g(w,c,d)=c0^:3

rAn OII:Iz3 to

-.>=O, w=l, SnUARZ(c) -> g (wc,d)=S.Q(c)(*2)

(2b: -!>=0, -1, SQUARe(c) -> g(w,z,d)=c i

v;:ere :7jX E(x) is a :re2icate ".h:ch is TPUC iFf x is 3 *er!_ct

squ_-e and S0. 1x) is the ICuaHre rcot of the perfect 3-uare x.

This term iz necessary in th'i rozain te',uirement -ince the ur3!SI-
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PLIFIED function is only defined for values of c which are per-

fect squares. Note that C2b is a subset of Cl and hence is of no

additional help in characterizing the general loop function. The

heuristic suggested in REWRITE is to rewrite the function expres-

sion w^(d*2+l) of C2a in terms of w, w*w (so as to introduce c)

and d. The peculiar nature of the exponent in this expression

leads one to the equivalent formula w*((w*w)^d). Applying SUB-

STITUTE in C2a yields

d>=O -> g(w,c,d)=w*(cAd).

This function is in agreement with (i.e. is a superset of) Cl and

thus is a reasonable hypothesis for the general loop function.

In this example, the portion of C2 corresponding to the loop

body path which bypasses the updating of the initialized data is

redundant with Cl. Based on this, one might conclude that such

loop body paths should be ignored when constructing C2. ronside3-

I ing all loop body paths, however, does have the aevantage that an

incorrect program could possibly be disprove4 (at the time the

general loop function is being constructed) by observing an

inconsistency between constraint functions i! nd C2. Fc

inrtance, in t..e example, if the assignm,:nt to c had been ;ritten

"c:=c*2", the above analysis .oul' have datecte" an inconsistncy

in th3 constraints on the general, loop function. Such an incon-

sistency implies that the hypothesis being sought for the general

.behavior c. the looc does not exist, an1 hence, that the -rog:am

is not correct ,th respect to its soeciiction

* I

.4 .*-.. *., - *. - ** -
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In the previous section, the reader may recall that awkward-

ness in disproving programs was offered as a disadvantage of a

"top Jown" approach to synthesizing g. It has been our experi-

ence, however, that, as in the above instance, an error in the

program being considered often manifests itself as an incon-

sistency between Cl and C2. Such an inconsistency is usually

"easy" to detect and hence the program is "easy" to disprove.

While it is difficult to give a precise characterization of when

this will occur, intuitively, it will be the case provided that

the "error" (e.g. c*2 for c*c) can be "executed" on the first

iteration of the loop.

Example 3 - The following program counts the number of nodes

in a nonenpty binary tree using a set variable s. It differs

from the previous example in that more than 1 variable is ini-

tialize2. The tree variable t is the input tree whose no-es are

to 'e zounteJ. '.;e use the notation leftkt) and right(t) for the

left an-! right subtrees of t respectively. The predicate

empty(t) Is T ZU iff t is the empty tree (i.e. contains 0 noCes).

-- 0; :- { }

select and remove some elemernt s from s;
n := n. + 1;

if -eipty( left(e)) then s : U Veft (e)} fi;
T7 -empty(right(e)) thin s := U .right(e) fi

'.,h notation :' -5(t) apnearinj in the postecnrlition stanls fCr

t'e nuuber c- no,fes in 5)rnit,' tree t. f nst- aint fnc-

.... IL.. .. . .n t a rf .

-U ~'4
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tion is

Cl: "empty(t), n=O, s={tl -> g(n,s)=NODES(t).

Rather than considering each of the 4 possible paths through the

loop body individually, we abstract the combined effect of the

two IF statements as the assignment

s :- s U SONS(e),

where SO'TS(x) is the set of 0, 1 or 2 nonempty subtrees of x.

Applying this, the second constraint function is

C2: -empty(t), n=l, s=SO'NS(t) -> g(n,s)=NODES(t).

"Ie choose to REWRITE the function expression for C2 using the

recursive lefinition that NODES(x) for a nonempty tree x is 1

plus the NODS value of each of the 0, 1 or 2 nonempty subtrees

of x. Specifically, this would be

l+SUM (x,SONS (t) ,NODES (x))

where SU'I(A,3,C) stands for the summation of C over al-I A 9 3.
Applying SU3STITT in the obvious way yielIs

empty(t) -> g(n,s)=n+SU.!(x,s,':ODS(c))

which is in agreement v.,ith Cl anl is thus a re3scnable gues! -1cr

the general 'ocp function g.

Th*o re-iarks are in order concerning this example. -he fr-'-

heals with the con !,tion ~-mpty(t) a - n g in 'he .na in

reiquirenent -f the obtained function. The realer nay -:oner, if

t is not refcrencel n the loop (it is not in the paraneter X.i~t

or_ g) , how can the loon behavior )e on -aoty(t)7 7"e s- r

- that it otvious-' cjnnot; tho ')(oV 2unctio. in SiA:

-* * clivalrnt to

-,7-

4 - -l
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g (n, s) =n+SUM (x, s,NODES (x)).

For the remainder of the examples of this section, we assume that

these unnecessary conditions are removed from the domain require-

ment of the constraint function as part of the SUBSTITUTE step.

As a second point, in Example 3 we encounter the case where

the obtained function is, strictly speaking, too general, in that

its Oomain includes "unosual" inputs for which the behavior of

the loop does not aq. .e w6th the function. For instance, in the

example, the loop comrn ,-s the function

g (n,s) -n+SUM (x, s,NOMS (x))

only under the provision that the set s does not contain the

empty tree. This is normally not a serious problem in practice.

One proceeds as before, i.e. attempts to push through a proof of

correctness using the inferred function. If the proof is suc-

cessful, the program has been verifieed; otherwise, the charac-

teristics of the input -lata ,hich cause the verification

condition(s) to fail (e.g. s contains an empty tree) suggest an

appropriate restriction of the input domain (e.g. s contains only

nonemty trees) and the program can then be veri.ie. us t'-i

new, reztr4.ete4 function.

.xxiole 4 [ries 79] - Ackermanno function 'A(mn) can :e

defined as follows 'or all natural numers m an-' n:

SA(n) n+l
A (-i+i, n+) At Am, Air)-- ,n
Thefc-,ni)= A(m,A(.ira ,n)) .

....... .... c ,rogra ccmputes Ac -nrn ff'unt'.on us ".' a
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sequence variable s of natural numbers. The notation s(l) is the

rightmost element of s and s(2) is the second rightmost, etc.

The sequence s(..3) is s with s(2) and s(l) removed. We will use

< and > to construct sequences, i.e. a sequence s consisting of n

elements will be written <s(n), ... ,s(2),s(l)>.

{m>=0,n>=O}
S := <rMn>;
while size(s) 9 1 do

if s(2) - 0 theF- s:=s(..3) <s(1)+l>
e--seif s(1)-=-D____en s:--s(..3)] <s(2)-1,1>

else s:=s(..3) <s(2)-l,s(2),s(l)-l> fi

s=<-A (m, n) >}

For this program, the first constraint function is

Cl: m>=0, n>=0, s=<m,n> -> g(s)=<A(m,n)>.

The second constraint functions corresponding to the 3 paths

through the loop boay are

C2a: m=0, n>-0, s=<n+l> -> g(s)=<A(m,n)>

C2h: n>O, n =0, s=<n-Il,l> -> g(s)=<A(n,n)>

C2c: m>0, n >0, s=<r-l,rm,n-!> -> g(s)=<A(,i,n)>.

FET;PITING these 3 based on the above definition of A yields

m=0, n>=O, s=<n+1> -> g(s)=<n+I>

>,n =0, s=<n-:,l> ->gs)<m-l)

>,n >0, 3=<i-!,m,n-l>-> g(s)=<A(m-l,A(m,n-i))>.

3T3STITUTING here yields

s=<!: (I) > -> g (S)=<s >

z= < st2) , z (1) > - () <~ () s i )

3=<5 (3) ,s (2) ,S Cl)> -> 3(Cs) =<A(s (3) ,A~s (2) ,s (1)))>.

"ote that tha secornd of thcse functions i-plies Cl. Thc 3 zcee
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to suggest the general loop behavior (where n>l)

g (s (n) s (n-1), s. s(1)>)=

<A (s (n) ,A (S (n-l1) j . .. A(s (2) ,s (1))...))

We remark that in the first 3 examples, the heuristic

resulted in a loop function which was sufficiently general (i.e.

the loop was closed for the domain of the inferred function).

Example 4 illustrates that this does not always occur. The loop

function heuristic is helpful in the example in that it suggests

a behavior of the loop for general sequences of length 1, 2 and

3. Based on these results, verifier is left to infer a behavior

for a sequence of arbitrary length.

Exaple5 - Let v ;3e a one dimensional array of length n>O

which contains natural numbers. The following program finds the

mtaximum element in the array:

m :=0; i :=1;
while i <= n lo

if rn < v[iT-than i v vi1 f i;

f i
tmn=31GGES -_(V)

Vie r-otation BIGEST (v) appearing in the aostcondition stavr5 rr

the largest element of v. The following constra.int funictions are

C.. M=0, i=2. -> g(ri,i,v,n)=BIGG'C-STMv

C 2 m. 'v1] i=2 -

t; ci n t:le ar)-e,7rance of vflj an, 2 in ^Z, !c7%7

~t~:'2)in CZ. as 1 vtpT 3(v .rJ)), e :1.1. r -1,.

A! 4 0-
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the largest of its two arguments, and v[2..n] is a notation for

the subarray of v within the indicated bounds. The generaliza-

tion which suggests itself,

g(m,i,v,n)=M.AX(m ,BIGGEST(v[i..n])),

agrees with Cl.

Example 6 - If p is a pointer to a node in a binary tree,

let POST(p) be the sequence of pointers which point to the nodes

in a postorder traversal of the binary tree pointed to by p. The

following program constructs POST(p) in a sequence variable vs

using a stack variable stk. Ue use the notation 1(p) and r(p)

for the pointers to the left and right subtrees of the tree

pointed to by p. If p has the value NIL, ?OST(p) is the empty

sequence. The variable rt points to the root of the input tree

to be traversed.

9 := rt; stk := E',?'Y; vs := <>;
while -(:)=NIL & stk=EVPTY) d3o

if p#';IL then
stk <= p7* push p onto stk */
2 := l(p)

else I
ele stk 7* op stk ,

vs vs !I <o>;
n : r (P) fi

v-/ POST r t)

U, until ncw, we have attemptedI to infer a genera! loop Function

ro two constraint functions. Of cours', there is rothina spc-

cia.2 out the number two. I- thiS - the 'oi.nection"

c t',e n the Initializa.I ',a=i:le' an,: the 'ur':tion "3" is , t

clear Cron thi first two zonstraint Eunct'nz anc it -rro,:.s h' '-

-21- j
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ful to obtain a third constraint function. Functions Cl and C2

correspond to 0 and 1 loop body executions, respectively. The

third constraint function C3 will correspond to 2 loop body exe-

cutions. We will use the notation (el, ... ,en) for a stack con-

taining the elements el, ... ,en from top to bottom. The con-

straint functions for this program are

C" p=rt, stk=EZIPTY, vs=<> ->

g (p,stk,vs) =POST (r t)

C2: rt#NIL, p=l(rt) , stk=(rt) , vs=< ->

g (p,stk,vs) =POST(rt)

C3a: rtiNIL, l(rt) 0'IL, p=!(l(rt)), stk=(l(rt),rt), vs=<> ->

g (p, stk,vs) =POST (r t)

C33: rt#IIIL, !(rt)=NIL, p=r(rt), stk= MIPTY, vs=<rt> ->

g(p,stk,vs)=POST(rt) .

Note that there are two third constraint functions. C3a and C3b

corresponO to executions of the first and second loop hody paths

(on the zecond iteration) , respectively. There is only I- scon2

constraint function sinc only the !irst 'con bev2y path can be

e-:ecuted on the first iteration. rJsing the nec'Irsive -einiticn

0' POST, !..e ".'7nITZ "2, C2a andl -,-b as fnlo~s

*C2': ?= :L, p1(rt), st =(rt) , s-> ->

g( t:,? =P07T (I (rt)) i<rt> ! CSTA(r (rt))

Ca : rt Ii'L, 2(rt)#.IL, p=1(1(rt)), stk=(I(rt) ,rt), V=< >

f9 (ps tK , V ) =P'--f'T (I( (rt-)) < (r t)>I

C27: rt,'.TL, I (rt) (rt) , st =' '? " - , 7__.t>

3(~zkvs=<t !?OT:'rtH

- --
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Applying SUBSTITUTE to each of C2, C3a and C3b" suggests

stk=(el), vs=<> - g(p,stk,vs)=POST(p) jI<el>Hj POST(r(el))

stk=(el,e2), vs=< -> g(p,stk,vs)=POST(p) II<el>II POST(r(el))

I I<e 2 > I POST(r (e2))

stk==Ml-TY -> g(p,stk,vs)=vs I1 POST(p)
respectively. The first 2 of these functions imply the following

behavior for an arbitrary stack where vs has the value <>:

stk=(el, ... , en), vs=<> -> g(p,stk,vs)

POST(p) 1I (<el>II POST(el) I ... l <en>ll PC'T(en))

an-3 in combination with the last function, the general behavior

stk=(el, ... , en) -> g(p,stk,vs) =

vs II POST(p) 11 (<el>ll POST(el) H1 -.. 1I<en>H1 POSm (en))

is suggested.

In this section we have illustrated the use of our technique

on a number of example programs. The rea'er 'ias zeen that the

zuccess of the ,ethod hinges largely on the w y ROT r-

* e -hat guidelines can be use4 in Pcieling how to ap-1;y

t.is st.p? "he general rule given above i, to i'ent-'7 the vari-

ables that nee,- to be introduced into the ex-nress 4 .n an' then to

_' 4ite t.. e expression uzing the terms to-T -hi -ch % 'r -
a

C-+ : un Tor -nstm.-7e i 7 a:, e 3, .,,":= (t) ...-a ,s . .

using the termis 1 an,] SC(t). 3eyonul thi!A u'e, +,e.r, he

iapThr na'-iava notice' a an *, tiL-al si:.ilarity in t"e .aY

n t h, ae t i z :1 1 inten,-' tr :an .i t

"I zte ov~ '1cr:n 2 n a :tn o '

-23-
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some way. In Example 1, for instance, a multiplication operation

was decomposed into an addition and multiplication operation; in

2xample 3, a NODES operation was decomposed into a summation and

a number of NODES operations; in Example 5, a BIGGEST operation 4

was decomposed into a MAX and a BIGGEST operation. In Section 6

we will characterize this idea of decomposing the intended opera-

tion of the initialized loop program ana discuss several implica-

tions of the characterization for the proposed technique.

In Example 6, we saw that the technique generalizes to the

use of 3 (and indeed an arbitrary number of) constraint func-

tions. rle have seen that each of these functions defines a sub-

set of the general loop function g being sought. If the con-

straint functions themselves are sufficiently general, it may be

that the first several of these functions, taken collect v"Ly,

constitute a cormplete description of g. >7e consid'er this situa-

tion in the following section.

4. .cpete Constraints

The technique eescribed above for ottai-i.ng a general 7oop

function is "noncretermin*,stic" in that tha co stia!nt functions
a ot .recie1.: ' etr. F'v !-, &p'ir e, Iuncti ; r1t he- t, e

as a fnr.a l. basin fror whic'h inteU i- nt_ gesses can le made con-

c-2rning the general 'ehavior of the 1.oo. %ur belief is that i4

i- ,'tn enay for a hTian being to '14 in the remainirng ":ce "

t t-.e locn 1'-nctinn "-ictu=:" orco thi "e

-WIN
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There exist, however, circumstances when the constraints do

constitute a complete description of an adequate loop function.

specifically, this description may be complete through the use of

1, 2 or more of the constraint functions. The significance of

these situations is that no guessing or "filling in the picture"

is necessary; the program can be proven/disproven correct using
the constraints as the general loop function. In this section we

give a formal characterization of this circumistance.

Definition - For some N. > 0, an initialized loop is N-closed

wit4h respect to its specification f iff the union of the con-

straint functions Cl,C2, ... ,CN is a function g such that the

loop is closed for the domain of g. In this case, the con-

* straints Cl,C2, ... C11 are comnlete.

Thus if a looo is N-closed for some N>C, the union of the

* first N constraint Eunctions constituteq an a.lequate loop !unc-

tion fLor the loop under consideration. Intui-tively, the value 'I

is a Tnasure of how quic%!.y (in tr-,rm~c of the rnumher of loop

it~a~ora)the variables cornstrainel !-y irniti.:2 i4zation tall '.n

"gn!rl" values.

~x 7 - T7he fol..bow;in 7,rogram

3 a + I

~ a

b=~7F+ bC

7V
*~%e*' * . '4 - -Aim"
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is 1-closed since the first constraint function is

Cl: bO>=O, a=aO+l, b=bO -> g(a,b)=a0+bO+l

which SIMPLIFIES to

b>=O -> g(a,b)=a+b

and the loop is closed for the domain of this function. Thus Cl

by itself defines an adequate loop function.

Initialized loops which are 1-closed seem to occur rarely in

practice. Somewhat more frequently, an initialized loop will be

2-closed. For these programs, the loop function synthesis tech-

nique described above (using 2 constraint functions) is deter-

ministic.

Exanple 8a - Consider the progran

sun := 0;
while seq # E4PTY do

sum sun + hea(seq);
seq taii(seq)
o'!

s { sumqu-s-=S1A (3eq0)}.

The notati.n SI1'1A(seqC) appearing in the postconnition strn.'s

for the sum of the elements in the sequence seqO. -he progra- i:

2-75-i since the seccnA constraint function iZ.: 3eeC ::PT:, sum=head.(sef), sec~t ai3 ( eq3) ->

q(sumsec)= ! (Seq0)

'Thi '.j I'gLFI3S to

3(.,_-n,!: e +3T Sec
c. l.o iz tr-iviaY.Iy ci3eA _or t"n ,.m'no of t'.' s:-ction.

-2-,-
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Example 8b - As a second illustration of a 2-closed initial-

ized loop, the following program tests whether a particular key

appears in an ordered binary tree.

success := FALSE;
while tree 3 NULL & -success do

if name(tree) = key the-n success := TRUE*
e'9seif name(tree) < key then tree := right(tree)
else tree := left(tree) fi

Isuc'cess = IN(key,treeO)}

The notation IN(key,treeO) is a predicate which is true iff key

occurs in ordered binary tree treeO. This program is also 2-

closed. Note that the first constraint function

Cl: success=FALSE, tree=treeO->

g (successtree,key)=IN1(key,treeO)

SI'PLIFIES to

success=FALSE -> g(success,tree,key)=INl(key,tree).

If :,e consider the first path through the loop body, the sccor!

constraint function is

Z2: success= TRUE, tree 0,'IL, tree=tr e-C, key nan-e(tee) ->

g(uccess,tree,key) =I"(key, tree0Y

whi.ch SIM:PLIFI:Z to

success=TRUE, tree 'TT., y=name(tree) ->

q(success,tree,key)=IN(key,tree).

Although the domain of the union of these two functions is sce-

w!hat re stricted, i.e.

1<Success,tree,';ey>

W(success) -R (tree :417 & HIP

the loop 13 nevertheless close ,' for this Cain ' . ce

-27-
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initialized loop is 2-closed.

Example 3c - Consier the sequence of initialized loops

PIP2#P3 ... defined as follows for each 1>0:

PI : x>=0}
x := x *

while x > 0 do
x :x - I-,
y :y + k
od
[yT+ xO*I*kl.

F'or any 1>0, the first I constraint functions for program PI are

'Cl: xO>0O, xxO*I, y=yo -> g(z,y,k)=yO+xO*I*k

C2: xo>1l, x=xO*I-l, y=yO+k -> g(z,y,k)=yO+xO*I*k

Ci: x0>=I-l, xx0*I-(1-1), yy0+k*(I-l) -> g(x,y,k)=yO+.:*I*k.

These SI' PLIFY to

x>=0,:ix)-

x'0 I(x+l) -> gxy'c=~*%

re r e "I !s a predicate which is -.r.'UJ if' ils anruurent is a u.

tin, VfI. nce teuninn of these is th, functi-)n

nnl tl:s lo2 is close(! for th.-e lomain this finct ., "~ccn-

-:3-:

-. ~ - ILI



A Heuristic For Deriving Loop Functions

elude that for each 1>0, program PI is I-closed.

For many initialized loops which seem to occur in practice,

however, there does not exist an N such that they are 17-closed

with respect to their specifications. This means that no finite

number of constraint functions will pinpoint the appropriate gen-

eralization exactly; i.e. when applying the above technique in

these situations, some amount of inferring or guessing will

always be necessary. A case in point is the integer multiplica-

tion program from Example 1. The constraint functions CI,C2,C3,

define the general loop behavior for z=O, z=k, z=2*k,

etc. The program cannot be N-closed for any N since with input

v=N+l, the last value of z will be (N+l)*k which is not in the

lomain of any of these constraint functions.

As a final comment concerning NIT-closed Initialized loons, it

may be instructive to consider the followinq intuitive view of

th2se programs. Al 1-closed ant4 2-closed initialize, ! op

share the characteristic that they are "forletful", i.e. t>.'r

soon 7ose trick of ho., "long" they have been executing anr lack

the necc3sary !at3 to recover this ir,'nation. This is -!e to

t;e ct that ltermedi te sta stet-s -,hich occur -fter an ar.,;-

tr 'r1 n'er o1 iter-ations are in-:stingui ;'hl3 froM dat state3

wnhch occur after 0 (or 1) loop iterations. To illustr~t?, con-

ziler the 2-close! initializei lo cC l* oe 3a .-hich sums the

elements containe4 in a sequence. After some arhitrar-i nui!-er oE

iterations in an execution of t'is )rccram, sui7ose *,;- stom, it

.in- inspect the values of the Frogra v2rah~c !7u an !e..-29- , n va 'a)
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Based on these values, what can we tell about the history of the

execution? The answer is not too much; about all we can say is

that if sum is not zero then we know we have previously executed

at least 1 loop iteration, but the exact number of these itera-

tions may be 1, 10 or 10000.

By way of contrast, again consider the integer multiplica-

tion program of Example 1, an initialized loop we know not to be

N-closed for any N. Suppose we stop the program after an arbi-

trary number of iterations in its execution. Based on the values

of the program variables z, v and k, what can we tell about the

history of the execution? This information tells us a great

4eal; for example, we know the loop has iterated exactly z/k

ti'es and we can reconstruct each previous value of the variable

z.

initialized loops which have the information available to

reconstruct their past have the potentia! to behave in a "tric,,"

manner. 3y "tricky" here, we - ean performing in such a !Iay that

e en:-s unex:e cte'ily on the history of the execution of the loot

(i.e. on the effect achevel by previous Icop iterati-ns) a

r> !t ,of this 'oo',) .ehavior wou ' be a loop functicn w;'ich :,a'

"inconsistent" across al! values of the Ioon inputs "'icn"

coulP: only be in7errel fron the ccnstraint "unctions with consi"-

-.ra'.)e -"i12iculty. ';e consier th-s nhe-omenon mrre c:- efui.' in

the liosoc:tn * section; for nei, -.ze e- 'ar z e th It i r _'

i 7.c- tcntii1 _ to -*ha e n I-hi , anpleas -- . . t -.inne-r t'iat_ 1-- _ : in:7

in -c.ose' , 2-:1o'e, init{ . .oon' on' :hi ' a'.o'z th7nr

~tug
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general behavior to be described completely by the first 1 or 2

constraint functions.

5. 'Tricky' Programs

The above heuristic suggests inferring g from 2 subsets of

that function, Cl and C2. Constraint function C2 is of particu-

lar importance since P-EWRITE and SUBSTITUTE are applied to this

function and it, consequently, serves to guide the generalization

process. 72 is based on the program specification f, the ini-

tialization anl the input/output behavior of the loop boly on its

first execution. In any problem of inferring data concerning

some population based on samples from that population, the accu-

racy of the results depends largely on how representative the

samples are of the population as a whole. The ,egree to which

the sample define.1 in C2 is is representative of the unknown gen-

eral function .e are seeking depends entirely on how. renrezenta-

tive the ___/output behavior of tha 1oop bo--1,7 on the first lop

"__iteration is of th__ input/ot-,t hehavior of the 1 ,z ° r,, n a n

arb_-trary subsequent loop iteration.

To giva the reaCer the general i,lea of .'h,"t ',e have in -. in,,,

cons 1 r the pog3ra tc count the norles in - .-'nary tree 'n

21e 3. If the loop bo-ly 1-1 something ?eculiar whn, for e:: m-

2 h, he set s contained 2 no-les with the same pa-'ent ne, o-

,.q-an n ha-1 the value 15, the havior of the n' .. :0 o

Tra:r. y "Decu 4izr" here, we -rneaon th-at not

-31-
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have been anticipated based solely on input/output observations

of its initial execution. An application of our heuristic on

programs of this nature would almost certainly fail since

(apparently) vital information would be missing from C1 and C2.

Example 9 - Consider applying the technique to the following

program which is an alternative implementation of the integer

multiplication program presented in Example 1:

[v>=01
z := 0;
while v v 0 do

if z=0 then z : k
eliseif z=-kthen z z * 2 * v
else z z - k fi;
v V - 1
od

{ z k.

The constraint functions Cl and C2 are identical to those for the

program in Exar.ple 1 and v',e have no reason to infer. a different

function g. Yet this function is not only an incorrect

hypothesis, it does not even cone close to descr' ing the general
behavior of the loop. The ifficu'ty is that thj behavior of t

_oop oo cn its first e;:ecution is in no way typ-.a". of its gen-

era! behavior. This is ,he to the high depen-ence of the loo

o-*' >Dehajvor or, the innut valle of the inivariae z.

'e nake the following rerarks concerning progran of this

nature. Pirst, our e'parience in-icates that the ocu:r ery

rair s n -ra,:tice Sconc-, -htcau!72 tlv t-r.2 - "-e ;ui - ":f-

Lcut to .nal'%zo,, !;nAn'erstar.-, we conzi,-cr then "t*ichy" r

.ocr.. .st.: ti-eur , nrogr-i-is-, ta-..
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(input/output) behavior of the loop body on the first iteration

is representative of its behavior on an arbitrary subsequent

iteration is really a question of whether its behavior when the

initialized variables have their initial values is representative

of its behavior when the initialized variables have "arbitrary"

values. Put still another way, the question is whether the loop

body behaves in a "uniform" manner across the spectrum of possi-

ble values of the initialized data.

In practice, a consequence of a loop body exhibiting this

uniform behavior is that there exists a simply expressed, connec-

tion between different input values of the initialized lata and

the corresponding result produced by the ' 4IIL'_ loop. It is the

existence of such a connection which notivates the SJUBSTITU'r .

step above and which is thus a necessary precondition for a suc-

cessful application of the technique. This explains its failure

in Cealing with programs such as th.at in -xmpa . "1e :ae no

further mention of these "tricky" programs, anr' in the follo.1

section eiscuss an informaj. categorization of "rensnahl!" ro-

jrnns .nn,2 consider its implications for our 1Dop -uncti-r syn-
thsstechnique,.~

7 an. , P.' T --,on .

T I s section, wo ic~ oe 'c atrsiso n

cPo.ncn~y occu'rng jtirat~ve ?ro.r -s. T.e :.racterizcire L

u- '...,n to :u je . 2 r~ e st Z i 7- e.. .. ' ; "1 s .t ~'2 - -r,"7 t ,.~ - Z n

--E ME
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loop functions is particularly useful when applied to initialized

loops in one of these categories.

In solving any particular problem, it often makes sense to

consider certain instances of the problem as being "easier" or

"harder" to solve than other instances. For example, with the

problem of sorting a table, an instance of the problem for a

table containing N elements might be harder to golve than an

instance of the problem for a table containing N-I elements.

Similarly, if the problem is multiplying natural numbers, a*b

might be easier to solve than (a+l)*b. This notion of "easier"

and "harder" instances of a problem is particularly apparent for

problems with natural recursive solutions. These solutions solve

complex instances in terms of less comple;x instances and hence

support the idea of one problem instance being easier to solve

than another.

ror the purpose of this discussion, -Ie iivi-e the ehta 4odi-

Cie7 !v the initialized loop under cons ieration Irto two sec-

tions: the accu7!ulating data and the control data. The accumu-

l2ting data is the specified output varoaf_(s) o he loopo* .e

re:naining odified :ata is the contro'. '_ta anrl cften 3erve5 to

"4,1i'" the e2xecution of the o-oo an* ;eternne the oint at

,htch the loo. should terninate. Loth the accumul.ating ata an,!

the control data are typically (but not al'-,ys) constraine h.

initill;.zation in front of the loop.

4..,
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Example lOa - In the program

{n>=O}
z := 1; t := 0;
while t # n do

t : t + IT
Z : Z * t
od

{z=nl

the variable z is the specified output of the loop and is hence

the accumulating data. The other modified variable, t, is used

to control the termination of the loop and is the control data.

In many cases, the control data can be viewed as renresent-

ing an instance (or perhaps several instances) of the problem

heing solved. As the loop executes and the control lata changes,

the control data represents different instances of this problem.

To illustrate, we can think of the control -ata t in the )revious

e am le as a variable escribing a particular initance of the

factorial problem. As the loop executes, the variable t ta!hs on

the values C, I, .. , n, ane these values can be thought to

corres_one to the problems 0!, 1!, ... ni.

2ase' on these informal observation.n, we characterize a

(o-!.m the E7tto.m U.,ar .c) 7.noo as one rvhere the control 'ta nrob-

_2-. instances ar.e generate. in order o increazing c t ',

g -ng with a simple instance an, ending '4th the ir~ut _rob-

*n l nstmne to be solve . In the execution o a -t 'oon, tr?

-- ± .>ta . .n e ...... .... 0ro ' -

be~* Iroi ,p . :v7 -aiit _n t,-P t "

-I,
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accomplished is t! and t moves from 0 (a simple factorial

instance) to n (the input factorial instance).

Conversely, we characterize a TD (from the Top Downward)

loop as one where the control data problem instances are gen-

erated in order of decreasing complexity, beginning with the

input problem instance and ending with a simple problem instance.

In the execution of a TD loop, the control data can be viewed as

representing the "work" that remains to be !one.

E:ample 10b - We consider the following alternative imple-

mentation of factorial to be a TD loop:I {n>=01
z := 1; t := n;
while t 1 0 do

z :=z *t;
t t - 1
oc

As before z and t are the accumulating an 2 control ,.ata re -ec-

tively. The variable t --ovc- 'ro- (the inut factor ia=

inst ince) an-7 ens w.ith C (a siT.ple 5vntorial instance) . After

a ty it4jtion, the oroduct n*(n- 1 )* *(t+!) 'as been accu.u-

• ,:, e-in t!'. as - !-te "wocrk" th, renains t, ' .. ..bo-

xair ii- As an adi~tiona! i un, trat -o, cor

foI Iow i ng 3 initialized loops ,ihich copute in- -- a

r i ch'
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A: ly>=0} 3: {y>=o C: [y>=0}
w:=l; t:=O; w:=l; t:=y; w:=l; c:=x; t:=y;
while tyy do while t#0 do while t#O do

w : w*x; w : w*x; T7 od(It then
t :t+l t :t- w := w*c-;
od oe c:=c*c; t:=t7y

fW=37y od
tw=iwy}

As before, the symbol ^ is used as an infix exponentiation opera-

tor. We consieer program A to be a EU loop. The control data t

moves from 0 to y and corresponds to the problem instances x^O,

... , x^y. On the other hand, B is TD since the control ata t

moves from y to 0 and corresponls to the problem instances x^y,

x^0. Program C (similar to that in Example 2) is slightly

o Lre difficult to analyze. The control data is the pair <c,t>.

The pair is initialized to <x,y> an2 en,7s with the value <c',0>,

where c' is Come complex function of x and y. It seems reason-

able to consi-r <ct> as representing the :roblen c^t. Mence 'n

conclude C is also TD. This conclusion a'-so ia',es sense in Ti;>t

of the Fact that C is really an optimLze4 ver ion o_: - Ihic

s ..... _teraticns by e:ploiting the binary c -ps-tcn of ,

The -arcterization oF-217 an( - '=-,)s 'es cr . er. i . ,

:1 cou'-a, an in or-al one anC 4nl- la-rgsl on one's

- n or purose cf t e

e e ove programs y usirg "ihat .;c consl- ere-I to Ie t',-

'ost "'~turaU" cr irtuitive inter.r-ttion; cther interprtti:-s

t-c .a-7n_ , if'erer- i n ter i tc. t : n-;

t*,- on ... r01. 1 tn 2,-,ee c-u a I= -  v,:. '  ' 9 c ' -. .- -

-: ' :Z Z ?. .t -7 77 -7- t-. f

-37-
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view. For example, consider the following program which adds up

the elements in a subarray between indices pl and p2:

sum := 0; i := pl;
while t <= p2 do

sum : sum + a[i];
i : i + 1
od

{sum=ASUM (a [pl. .p2]) }.

The notation ASUM(a[pl..p2]) appearing in the postconaition

stands for the summation of the elements in the inlicated subar-

ray. The question which arises in attempting to classify this

Drogram is as follows: as the control d!ata i moves through the

values pl, p!+1, ..., p2, is it most appropriate to think of it

as representing the problem instance which has been solved (i.e.

ASUi'(a~p1..iI)) or as representing the problem instance which

remains to be solved (i.e. ASUM(a[i..p2])). Eoth views seem

equally intuitive, that is, the program seems to he as much 2U as

it is .1.

Asa f.inal example, we refer back to the program in :xaop~

3 -nich counts th-e nofss in i binar. tree. Tt is 1ear n an- t

3-et variabe 3 are tEn- accu. uelag e , . control *7t r9e-

*t7"Ly. InSti l.y, s coltl'n the tree ,,%oe ni .es a:e to be

count2-; '.hen t'-e. pre~re, ter-'inat- s i- ept". In ' 'ee-, s

ccnta-jns variou~ s -,,t, of the origina. tree. It e-s natu-::'

to :i the set a- 7T-tain'- n o ro - .. .... .... simpler

* a.r- ... a 7nc
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We have seen that the problem solving method taken by a BU

loop is one of approaching the general problem instance from some

simple problem instance. Of course, this problem solving method

is reasonable only when there exists some technique whereby one

is guaranteed to "run into" the general problem instance. Our

view is that in many cases, such a convergence technique either

.oes not exist or requires so much support that the 3U approach

is not practical. This appears to be particularly true for pro-

grams dealing with sophisticated data types (i.e. something other

than integers) and for programs requiring a high degree of effi-

ciency in their number of iterations.

To help see this point of view, again consv.ier the NODES

grogram of "xampte 3. Previously we argued that this was a TD

program. ,;hat would a BU program .hich computed1 the same func-

ticn look lik*e? Te following program skeleton suggests itsel:

n : ; tl "an empty trae";
;ile t! t -1,o

.! a no-le to t- to make it Iook mor 2ike t
n := n + 1

=,:. 7 -:,S ( t).

"ere, t'-e t. varie tU i- the c-n ] at - a in, t : C:.

th pro>'.em n (t -). The .1if'_iculty with this attempt at

pro-gram solution is the i-,.e..entation of the moc:ficaticn off t-'.

Such ai no-lification requires c'io-ce insiectiSon (i.e. i trrl)

'r' to 710rl -, to'.ar', t. Tn.1i~ o' t% In it a-!7

-32
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As an illustration of another circumstance where the BU

approach seems unreasonable, the reader is encouraged to imagine

a BU implementation of integer exponentiation which operates as

efficiently as the exponentiation program C from Example 11.

Again, a program skeleton suggests itself:

ly>=O}
w :1; c : ;d := 0;
while <c,d> /<x,y> do

c := sqrt(c);-
if ? then

d :. d * 2+ 1.; w w *c
else d := d * 2 fi
d-

..ore, we are attempting to move the control data cc,c2> toward

<x,y> as fast as we moved it away from <x,y> in TD progran C. As

with the BUJ NODES program, the problem here is how to complete

the program so as to achieve the desired effect. our conclusion

concerning this program is that supplying an appr-opriate initial

value for c an3 deter-mining the proper loon bo~ly path to be e:-e-

c.ute-A requires sucha complexity that this anproaci is not a feas4-

* .2le 32.ternative to programn C.

In this section -.%e have suggeste& two irfornial. catagoriec 02-

in- - z~ oC -ro&Iz--,s . .70r~ee t'-e c-:in-ci tn thie

ai* r')ora h t~ a;en 4 n a T program- solution 'ia rather li-iiteuiap.i

C~ *A anr tivt 1Dprogrars ten4d to occur -nore 'roquent'y i4

rat' ae e ee th at ths cliarac, r at-.n i ~ u e t.~a

311 ni c-irg- ?nle- ~vinqc 1'i)~ ut our a-

~ vt~o~ ~: ~ in~tjate thekin~ o c'Q4
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occurring programs on which the loop function synthesis technique

described above works well.

Consider applying this technique to a general TD program.

In the second constraint function, the control data is bound to a

value which represents a slightly less complex instance of the

general problem being solved by the initialized loop. In prac-

tice, the appearance of this value in the constraint function

suggests the problem decomposition being exploitee by the pro-

grammer in order to achieve the program result. Applying this

,ecomposition in REWRITE leads quite naturally to the desired

general loop function.

Example 12 - Consider the T) factorial program from Example

10b. The second constraint function is

C2: n>G, z=n, t=n-i -> g(z,t)-n!

The control ,'ata t being bound to n-1 suggests 77717RITT!'"( ! an

n*(n-i)!. This 1eads to the correct general loop function. On

the other hanl, consider the secon' constra.nt function for the

_J Lactorial program from Zxample !Ca:

02: n>O, z=l, t=1 -> gz,t,n)=n!

:.'ow can the i::pres lon .- e .reritten in te-. of , 1, an(!,

-To o:tain the correct general function, the xpressior. ",cu'ai X..ve

to be rewritten as (l*n!)/(,1!) ,.ihiih seems 'uch Tess _ntuitiv

* than that recirel for the TT vers1n.. As ancther ncint of com-

narison, consi t.r t eecond ccr str..t Octr 'Tar t, C

2:cpo ... tiation progran- 77 '-oT ' "' '  U:

C2: "y> , i;'x, t=v-I -> ct,:<) =xy

l LA.
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and the second constraint function for the BU exponentiation pro-

gram A from the same example:

C2: y>O, w=x, t=l -> g(w,t,x,y)=x~y.

In both cases, the proper loop function may be obtained by using

the REWRITE rule xWy = x*(x^(y-1)); however, this particular rule

seems more strongly suggested in the constraint function for the

TD program.

We remark that the same general phenomenon occurs with TD

programs in the event the control data has been SIM11PLIFIED out of

the domain requirement for C2. In this case, the fact that the

control data represents a slightly less complex instance of the

general problem being solved manifests itself in the function

expression for the SIMPLIFID C2 being a slightly more conplex

instance of the problem being solved. For example, the con-

straint function C2 above for the 7) exponentiation progra- B of

... ~ml 1 can be S"!PLIFIZD to

t>=0, w=x -> g(7,t,:<l=x^(t+l)

3efore, the appearance of y-i in the domain requirerent suggeste!

rewritting c^y as x*(x^(y-l)). Heri, the appearance t5 t+l in

t'he function expression suggests re,ritting x^(t+l) as x*'x-t)

(sae also Example! . and 2).

Suppose f is the operation or function the initializc' '-:o

progran "s intenler] to compute. Tn lection 3 .e oserve: tiat

each.:72. ""T in the eanOTes c - that sectron "nvolvo "coo-

icaton of . This c.'ioositic' ,:orespn,. t

r? ,ritting thiat pr lem instincs in tern-; n-f a s1--j .
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complex problem instance (or instances). In general, of course,

there are many ways this decomposition can be performed. In the

examples of that section, however, as with all TD programs, the

nature of the control data guides this decomposition an6 thus

tends to make the REWRITE step quite straightforward in practice.

The reader may have noticed that the general loop functions

for the 3U factorial and expdnentiation programs contain more

program variables and operations on those variables than their TD

counterparts. For instance, the general loop functions for the

3U and TD factorial programs are

O<=t<=n -> g(z,t,n)=z*(n!/t1)

and

O<=t -> g(z,t)=z*t!

respectively. This fact, by itself, helps explain why the

7N'17RITE step seems more d.ifficult for the 2J programs. It would

be a mistake, however, to assune that the BU programs are more

"comnplex" or are more difficult to anal.yze or prove. .Te consiz'er

?' loCps to .go somewhat more susceotible to the form of infuct4or

omp loye- ir .unctional loop verification. Mlore precisely, the

Sir9uctive "ypothesis requirel in this type of nroof (i.e. a gen-

r! stite-ent conceriing t he locn innut/outnut 'ie--vior) seens

to be more -iaily stat?9 for 7D programns than for U prngras.

?' the other han, -Z"proq"rans seem somew hat -ore sjscentibl tc

-:n icti-e aszert'on :rcol. The TnKctive h'tothesis recuire!

invc'ves FEw--er rrn a i '! s 9 ,- _'-t s those ,.-

-42- .
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ables than the same type of hypothesis for the corresponding TD

loop. As an example, the BU and TD factorial programs have ade-

quate loop invariants 0<=t & z=t! and 0<=t<=n & z=n!/t! respec-

tively.

In [Manna & Waldinger 70], the authors describe a program

synthesis technique and point out that their method produces

either of the above factorial programs depending upon which type

induction rule the synthesizer is given to employ.

7. Related WCork

In [Basu & Misra 76, Misra 73, Misra 79), the authors

describe two classes of "naturally provable" programs for which

generalized loop specifications can be obtained in a determinis-

tic manner. Our technique sacrifices determinism in favor of

wise applicability and ease of use. It handles in a fairly

straightforwar? manner typical programs in these two program

classez (e.g. TZxamp*es 1-3) as well as a number of ;-rogra-ns

which do not fit in either of the classes (e.g. Fxamples 4-5)

Due to the close relationship bet-ieen loop furctions and

lco? invariants (see, for exampla, [, crriS & .  eit 771) ,any

techn i. - - ' or syntiesizing loo- invariants can 'e vlewed as a

technique for synthesizing general loop funct'ens (an< vi_-e

versa). In t"is light, our etho -er an teret'n; reze -

>'ance to a loon "nvaciant synthsis tecn..cue . cr rl i

"et 7,4, :%atz & ":aria 7 In this t-r,-. " ,, , n tronger an

s tron~ r "2?pro:{imzt~orn" to an ;-',quate ic n "nvariant ar ra,?e

-!4
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by pushing the previous approximation back through the loop once,

twuice, etc.

By way of illustration, consider the exponentiation program

of Example 2. The loop exit condition can be used to obtain an

initial loop invariant approximation

d0O -> .I=cO~dO.

This app2roximation can be strengthened by pushing it back through

the loop to yield

(d0G -> w=cO~dO) & (d=l -> w*c=cO~dO).

In the analysis presented in Example 2, we obtained a value for

the generalized function specification for each of two different

values of the initialized variable w (i.e. 1 an3 SCRT(c)); here

we have obtained a "value" for the loop invariant we are seeking

for each of two different values of the variable which controls

the termination of the loop ti. Applying the analy'sis In ["orris

iegbreit 771,, these loop invariant "values" can. h'e translate,"

to constraint functions as follown:

C.11 courze, thle fu'ncton -:x:ress ion --i~c in the seccn3 ce-nstrai-nt

*~ ~ a *.) rs writtsn ,i* (cA!) ; U3U!Cas usual Su'jqp?2tS the sn

* era 1 loop f-unction

i 3C th e n a ? t h - p rcg r m ~r 2c n i t -or n T a Co -ia i n estricti-on

0.1 f -- fn c 1i n, re ult is thie sar e jensr--t. lcc,' funr :ti-n

2.,covire- in £--:A-1e 2.
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We summarize the relationship between these two techniques

as follows. As the initialized loop in question operates on some

particular input, let X[O], X[]1, .. ,X[N] be the sequence of

states on which the loop predicate is evaluated (i.e. the loop

body executes M-1 times). Of course, in X[O], the initialized

variables have their initialized values, and in X[N], the loop

predicate evaluates to VALSE. The method proposed in this paper

suggests inferring the unknown loop function g from X[0], X[1],

g(X[Oj) and g(X[l]). The loop invariant technique described

above, when viewed as a loop function technique, suggests infer-

ring g from X[1I], X11-1], g(X[N]) and g(X[N-I]) . Speaking

roughly then, one technique uses the first several executions of

the loop, the other uses the last several executions. One

ignores the information that the loop must compute the ientity

function on inputs where the loop predicate is rALSE, the other

ignores the information that the loop must co'ipute like the ini-

ti!.ize- loop when initializef] variables have thei initialize-

arli-r we liscunse,2 "top clown" an,! "bottomr up" ap2DoacheS

to syt'hesizIng g -and n2icated that our tecThnique fit in the

"ton .--rwn" cat2gry. The tech niqu= baset on the last ev'era

tefratiors is a "bottorm up" appro!Fch. It is difficult to care-

2ully state the relati.ve .erits cc these t?o o.-osirg tech- : -

in our vie:, o'over, there are a numher n' circ'istanc - un
the ch--c aee on the f'rst sev r- a I o cu t nn_

see'.s "ninrf "natural" an. cisilyr vp-n._ _ . 1hese :-a,1--. 3 , D
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the IODES program, the program to compute Ackermann's function

and the TD factorial program discussed above. The reason is that

a critical aspect of the general loop function is the function

computed by the initialized loop program (e.g. exponentiation in

the above illustration). in the technique based on the first

several iterations, this function appears explicitly in the con-

straint functions. In the other technique, this information must

somehow be inferred from the corresponding constraint functions

(e.g. by looking for a pattern in these functions, etc.). This

difficulty is inherent in any "bottom up" approach to synthesiz-

ing g.

S. Concluding Remarks

In this paper we have proposed a technique for aeriving

functions which describe the general behavior of a loop which is

preceded by initialization. These functions can be used in a

functional [Mills 751 or subgoal inuction ['or - i & °;egbreit 77

proof of correctness of t~he initialized loop program. it is not

our intention to imply that verification souC' occur after t'e

prograriming process has been completed. -. ere are, 2-cwever,
L -- !a e~ numiber of e'-isting pr ograms ,,, ich must '3e rea ,  , ,rt ,

m od i. anr ver ifi~ b a a .erone. . 3 0 r

h ',u ristic as . tool ,:hich -s int: ..Ae.. to f ac iItate these tas. a

it has be3en argue-' [:lisra 73] that the notion of closure :f

a .oop ,t ::'.sct to an "nnut domain is fun:antal -.r 2? al::-

in, the loop. In Section , this i.!ea is applied to initia2.ize.'

-47-
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loop programs. The result is that a loop function g for a loop

which is N-closed (for some N>O) can be synthesized in a deter-

ministic manner by considering the first N constraint functions.

Hence this categorization can be viewed as one measure of the

"degree of difficulty" involved in verifying initialized loop

programs.

An interesting direction for future research is the develop-

ment of a precise characterization of programs which are not

"tricky" (as discussed in Section 5). Preliminary results along

this line are described in [Dunlop & Basili 311 (see also [Basu

90]).

In Section 6 we discussed on an informal level the opposing

BU and TD problem solving strategies and their corresponding ini-

tialized Loop realizations. We argued that the TD approach

appeared to be more widely applicable and that, in practice, TD

programs seem to occur more frequently. !"e explained the success

o-1 the proposed loop function creation technique on these pro-

grams in terms of an easily applied rREWRITE step. These results

are offered to help support our vie- that the technirque may be

successfully applied in a wide range of apphications.

b*

7~. - 'I
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